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PICTURE OF MODEL IN WIND TUNNEL 

A joint Langley-Lockheed wind tunnel test was undertaken involving 
this model. The motivation f o r  this test is explained in the figures to 
come. 

a 
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CONVENTIONAL VERSUS SUPERCRITICAL AIRFOILS - GEOMETRIC SHAPE 

In 1981 Lockheed conducted a wind tunnel test that compared conventional 
and supercritical airfoils while holding stiffness, mass, and planform 
geometric shape constant. 

Model Airfoil Profiles for Instrumented 
Pressure Sections -- 

CONVENT1 ONAL A I RFOl L SUPERCRITICAL A I  RFOlL 
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CONVENTIONAL VERSUS SUPERCRITICAL AIRFOILS - FLUTTER BOUNDARIES 

This test and other tests show that changing from a conventional airfoil 
shape to a supercritical airfoil shape can greatly reduce the wing's flutter 
speed. The test also showed that there was a region of low damping within 
the flight envelope of this wing with supercritical airfoils. This low 
damping region is shaded in the figure. 
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PROBLEM 

The aerodynamic programs used in flutter analyses do not accurately 
predict the complex flow around supercritical airfoils in the transonic 
flow region. This causes the use of long costly wind tunnel tests and 
empirical weighting factors t o  modify the analytically predicted flutter 
speeds. The result can be a stiffer, heavier wing than is needed. 

Unsteady transonic aerodynamic programs using Computational Fluid 
Dynamics (CFD) methods show promise of more accurately predicting transonic 
flow, but these programs need to be validated before they can be incorporated 
into a production flutter method. 

To validate the programs, analytical predictions must be correlated 
with steady and unsteady experimental flow data on a flexible, three-dimen- 
sional wing. Most of the data available for correlation is from tests on 
two-dimensional or three-dimensional rigid wings. 

In April 1984, Lockheed-Georgia and NASA-Langley conducted a wind tunnel 
test to obtain all of the types of data needed for CFD program correlation. 
This included steady state data, forced oscillation data, and oscillatory 
data during flutter. 

* New T e c h n o l o g i e s  
H a v e  L o w e r  F l u t t e r  S p e e d s  

* P r e s e n t  A n a l y t i c a l  M e t h o d s  
A r e  N o t  A c c u r a t e  

* C o m p u t a t i o n a l  F l u i d  D y n a m i c s  ( C F D )  

* V e r i f y  C F D  P r o g r a m s  

* L a c k  o f  T e s t  D a t a  f o r  C o r r e l a t i o n s  
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TEST OBJECTIVES 

There were three main objectives for this test. 
a) obtain aerodynamic data during flutter for CFD program correla- 

b) obtain a better understanding of supercritical wing flutter 
c) 

tion 

evaluate the effects that pylons and engines have on wing 
unsteady aerodynamics 

OBTAIN CONGRUENT FLUTTER AND AERO DATA FOR 
ANALYSIS CORRELATION 

OBTAIN B E ~ R  UNDERSTANDING OF SUPERCRITICAL 
W I N G  FLUTTER 

EVALUATE EFFECTS OF PYLONS AND ENGINES ON W I N G  
AERO DATA 
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MODEL CONFIGURATIONS 

Four different' model configurations were tested. 
a) stiffer spar, bare wing 
b) nominal stiffness spar, bare wing 
c) 
d) nominal stiffness spar with aerodynamic simulated engines 

nominal stiffness spar with mass simulated engines 

The first configuration was used only for obtaining forced response 
oscillatory data. The other three configurations were used for obtaining 
both forced response oscillatory data and oscillatory data during flutter. 

STIFFER W I N G  (FOUR T IMES NOMINAL STIFFNESS) 

BARE W I N G  

N O M I N A L  STIFFNESS W I N G  

BARE W I N G  

W I N G  PLUS DUMMY NACELLES AND PYLONS 

W I N G  PLUS DUCTED NACELLES AND PYLONS 
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WING PLANFORM AND INSTRUMENTATION LAYOUT 

The wing had an aspect ratio of 7.84. It was constructed on a single 
aluminum spar with a supercritical airfoil. It had eleven mass ballasted 
sections. Five bending and torsion strain gage bridges and five pairs of 
accelerometers were distributed along the wing's span to define the steady 
and unsteady position of the wing. Instrumentation sections were located 
at 49.6% and 82.1% span. Each instrumentation section contained 17 delta 
pressure transducers and 7 upper surface pressure transducers from the lead- 
ing to the trailing edge. 

Aeroelastic Model Wing Planform 
and Instrumentation Layout 

,10.9"p- 
\ i o \ -  W. S. 83.59" .... 

0 

W I N G  
E M  STI  C ...e ::::;:e.. 

A X I S  \-A -ENGINE CENTER L I N E  
AT 38% C 

LEGEND 

PRESSURE TRANSDUCER S 

ACCELEROMETERS 
BENDING A N D  TORSION 
S T R A I N  GAGES 

7 / 
I 3 8 . 9 " d  

W.S. 0.0 i 

550 



ORIGINAL PAGE IS 
OF POOR QUALITY 

PICTURE OF INSTRUMENTATION SECTION 

This picture shows an opened up instrumentation section. The holes 
for the pressure transducers are visible on the wing's surface. Wires from 
the pressure transducers and the wing's spar are visible inside the model. 
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STIFFER SPAR TEST POINTS 

Test points are shown for the stiffer spar, bare wing configuration. 
The testing procedure is described below. 

1. After tunnel was warmed and wind off  zero readings were taken, the 
tunnel speed and density were increased to the desired values. 

2. The model was positioned at the desired angle of attack and steady 
state data was obtained. 

3 .  The wing was oscillated in pitch at 2, 4 ,  8, and 16 Hertz and un- 
steady measurements were obtained. 

4 .  The model was positioned at two more steady state angles of attack 
and oscillated at 2, 4 ,  8, and 16 Hertz. Steady and unsteady data 
were measured for each of these conditions. 

5. Tunnel speed was increased for testing at other Mach numbers for 
the same tunnel density. 

6. Upon reaching Mach 0.95 or flutter, the tunnel speed was decreased 
and Freon was pumped in to increase tunnel density to the next 
desired value. 

7. Testing resumed along another constant density line. 
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NOMINAL SPAR BARE WING TEST POINTS 

Test points are shown for the nominal stiffness spar, bare wing config- 
uration. The flutter boundary for this configuration is also shown. The 
test procedure was identical to that for  the stiff spar, bare wing configura- 
tion except forced oscillatory data were measured at fewer than three angles 
of attack for most test points. 

NASA LRC 'IRANSOYICS DYNAMICS 'JUNKEL LIHlTS 
ASD NOMINAL SPAR BARE L'INC TEST POIhTS 

NOMINAL SPAR BARE UING 
TEST FOISTS e FLvlTER F'OIhTS -5.25 lit. 

MACH WUHBER - n 
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NOMINAL SPAR WITH ENGINES TEST POINTS 

Test points are shown for the nominal stiffness spar, with engines 
configuration. The flutter boundary for this configuration is also shown. 
The test procedure was identical to that for the nominal stiffness spar, 
bare wing configuration. 

NASA LRC TRASSOWC DYYAHICS TIINNEL LIMITS 
AND NWIIAL SPAR WITH ENGINES TEST POIKTS 

MACH NUllBER - m 
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[** .;******, 
e** .* 

STEADY STATE DELTA PRESSURES - INBOARD SECTION 

This is a composite plot showing how the chordwise delta pressure dis- 
tribution changes with Mach number and tunnel density. 
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STEADY STATE DELTA PRESSURES - OUTBOARD SECTION 
This is a composite plot showing how the chordwise delta pressure dis- 

. tribution changes with Mach number and tunnel density. The differences 
in chordwise delta pressure distributions between the inboard and outboard 
sections is due to the difference in local angle of attack caused by the 
jig twist and the flexibility of the wing. 
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TIME HISTORY PLOTS 

This figure shows time history traces for a sample of data channels 
for both a forced oscillation case and for oscillations during flutter. 
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ROOT TORSION STRAIN GAGE - TIME HISTORY DURING FLUTTER 

This figure shows a time history plot of the root torsion strain gage 
during a flutter case. During the first 23 seconds of this plot the model’s 
deflection is increasing from flutter onset. After 23 seconds, the tunnel 
velocity was decreased by about 10% to keep the model from breaking up. 
The rest of the plot shows the model’s response gradually decreasing at 
the lower tunnel speed. 

WEAKER SPAR WITH DUMMY ENGINES 
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TIME HISTORIES - BEATING FLUTTER 

Aerodynamic data was also measured while the model was beating in and 
out of flutter. This figure shows a sample of data channels during this 
beating phenomenon. 
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TIME HISTORY CHORDWISE DELTA PRESSURE OSCILLATIONS DURING FLUTTER 

Moving from the top of this figure to the bottom, one cycle of forced 
response data is shown for both the inboard and the outboard sections. 
Nine instantaneous snapshots" are shown to depict how the chordwise delta 
pressure and airfoil position change with time. In each "snapshot" the 
top line is a bargraph of the delta pressure measurements (the leading edge 
is to the left and the trailing edge is to the right). The lower line in 
each "snapshot" depicts the unsteady airfoil position. 

11 
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REPRESENTATIVE FORCED RESPONSE AERODYNAMIC COEFFICIENTS 

From the instantaneous chordwise delta pressure distribution, the lift 
and the lift and moment coefficients were calculated. These "instantaneous" 
coefficients were plotted in this figure versus the section's "instantaneous" 
angle of attack. For the forced response case, the hysteresis moves in 
a counter-clockwise rotation indicating that energy is being put into the 
airstream by the airfoil. 
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REPRESENTATIVE AERODYNAMIC COEFFICIENTS DURING FLUTTER 

This is the same type of data from oscillations during flutter. Note 
that the hysteresis is moving in a clockwise rotation indicating that energy 
is being extracted from the airstream by the airfoil. 
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REPRESENTATIVE MULTICYCLE AERODYNAMIC DATA 

Three cycles of data have been plotted to show the repeatability of 
the data. The case shown is during forced oscillations. During a divergent 
flutter case, the model's amplitude is building so the plotted data would 
also increase in magnitude. 
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CHORDWISE DELTA PRESSURE COEFFICIENTS - 49.6% SPAN 

Unsteady chordwise delta pressures are presented in magnitudelphase 
.plots for representative measurements during flutter. 

C dP = dpmax/(Q*alphamax) 

Mach - 0.670 Q - 99 .000  
Root Alpha - 1.000 inboard Section Alpha - 4.809 

I 

ORIGINAL PAGE IS 
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CHORDWISE DELTA PRESSURE COEFFICIENTS - 82.1% SPAN 

Unsteady chordwise delta pressures are presented in magnitude/phase 
plots for representative measurements during flutter. 

C = dpmax/(Q*alpharnax) 
dP 

M a c h  = 0.670 Q - 99.000 
R o o t  Alpha = 1.000 Outboard Section Alpha - 1.1 4 5  
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CHORDWISE DELTA PRESSURE COEFFICIENTS 

Unsteady chordwise delta pressures are presented in real/imaginary 
plots for representative measurements during flutter. 
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M a c h  - 0.670 a - 99.000 
Root Alpha - 1.000 Inboard Section Alpha = 4.809 

Outboard Section Alpha - 6 . 6 5 7  

I 
a 
7 

I 

! 

0 m a m W 100 

raawrwR 
o m  * -  

1 1  41B - U l S  W 

I 



ORIGINAL PAGE IS 
OF POOR QUALITY 

10 - 
s -  

8 -  

7 - '  

a 8 -  

a -  

4 -  

3 

UNSTEADY LIFT COEFFICIENT - 49.6% SPAN 
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- r - r - r - - - r - r l - l - - l - T - l ~ ~ - 7 7 +  

Cia's are plotted for steady state, 2, 4 ,  8, & 16 Hertz at cYroot=-1.5 
degrees. Magnitudelphase plots are shown for measurements at 49.6% span. 
Plots are made versus reduced frequency -k. 

'amax c i  = cp 
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UNSTEADY LIFT COEFFICIENTS -82.1% SPAN 

m -  
a- 
m -  
a- 
Io- 

Cia 's  are plotted for steady state, 2, 4 ,  8, & 16 Hertz at CYroot=-1.5 
degrees. Magnitude/phase plots are 'shown for measurements at 82.1% span. 
Plots are made versus reduced frequency -k. 
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UNSTEADY LIFT COEFFICIENTS 

C i a ' s  are plotted for steady state, 2, 4 ,  8, & 16 Hertz at aroot=-1.5 
Real/imaginary plots are shown for measurements at 49.6% and 82.1% degrees. 

spans. Plots are made versus reduced frequency -k. 

'amax c = cm 
'a max 
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4 x F  
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SUMMARY 

1. Present flutter analysis methods do not accurately predict -the 
flutter speeds in the transonic flow region for wings with super- 
critical airfoils. 

2. Aerodynamic programs using CFD methods are being developed, but 
these programs need to be verified before they can be used with 
confidence. 

3.  A wind tunnel test was performed to obtain all types of data neces- 
sary for correlating with CFD programs to validate them for use 
on high aspect ratio wings. The data include steady state and 
unsteady aerodynamic measurements on a nominal stiffness wing and 
a wing four times that stiffness. There is data during forced oscil- 
lations and during flutter at several angles-of-attack, Mach numbers, 
and tunnel densities. 

4 .  The test data is being compiled and will be published in a NASA 
report. Data will also be available .through NASA on magnetic tape. 

5. The data is intended to be used f o r  correlating with and verifying 
CFD aerodynamic programs. 

IMPROVED TRANSONIC FLUTlER ANALYSES NEEDED 

COMPUTATIONAL FLUID DYNAMIC CODES 

PRESSURE I FLUTTER MODEL TEST CONDUCTED 

COMPILATION OF TEST DATA 

CORRELATION OF TEST DATA WITH CFD CODES 
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